
Package: devtools (via r-universe)
November 1, 2024

Title Tools to Make Developing R Packages Easier

Version 2.4.5.9000

Description Collection of package development tools.

License MIT + file LICENSE

URL https://devtools.r-lib.org/, https://github.com/r-lib/devtools

BugReports https://github.com/r-lib/devtools/issues

Depends R (>= 3.6), usethis (>= 2.1.6)

Imports cli (>= 3.3.0), desc (>= 1.4.1), ellipsis (>= 0.3.2), fs (>=
1.5.2), lifecycle (>= 1.0.1), memoise (>= 2.0.1), miniUI (>=
0.1.1.1), pkgbuild (>= 1.3.1), pkgdown (>= 2.0.6), pkgload (>=
1.3.0), profvis (>= 0.3.7), rcmdcheck (>= 1.4.0), remotes (>=
2.4.2), rlang (>= 1.0.4), roxygen2 (>= 7.2.1), rversions (>=
2.1.1), sessioninfo (>= 1.2.2), stats, testthat (>= 3.2.0),
tools, urlchecker (>= 1.0.1), utils, withr (>= 2.5.0)

Suggests BiocManager (>= 1.30.18), callr (>= 3.7.1), covr (>= 3.5.1),
curl (>= 4.3.2), digest (>= 0.6.29), DT (>= 0.23), foghorn (>=
1.4.2), gh (>= 1.3.0), gmailr (>= 1.0.1), httr (>= 1.4.3),
knitr (>= 1.39), lintr (>= 3.0.0), MASS, mockery (>= 0.4.3),
pingr (>= 2.0.1), rhub (>= 1.1.1), rmarkdown (>= 2.14),
rstudioapi (>= 0.13), spelling (>= 2.2)

VignetteBuilder knitr

Remotes r-lib/testthat

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://ifpri.r-universe.dev

RemoteUrl https://github.com/r-lib/devtools

1

https://devtools.r-lib.org/
https://github.com/r-lib/devtools
https://github.com/r-lib/devtools/issues

2 bash

RemoteRef HEAD

RemoteSha 6ec478bbb26645c6fda6d1c518b27e7f478fc91e

Contents
bash . 2
build . 3
build_manual . 5
build_rmd . 5
build_site . 6
build_vignettes . 6
check . 7
check_mac_release . 10
check_man . 11
check_rhub . 12
check_win . 13
clean_vignettes . 14
create . 15
dev_sitrep . 15
document . 16
install . 17
install_deps . 19
lint . 20
load_all . 21
missing_s3 . 23
release . 23
reload . 24
run_examples . 25
save_all . 26
show_news . 26
source_gist . 27
source_url . 28
spell_check . 29
test . 29
uninstall . 30
wd . 31

Index 32

bash Open bash shell in package directory.

Description

Open bash shell in package directory.

build 3

Usage

bash(pkg = ".")

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

build Build package

Description

Building converts a package source directory into a single bundled file. If binary = FALSE this cre-
ates a tar.gz package that can be installed on any platform, provided they have a full development
environment (although packages without source code can typically be installed out of the box). If
binary = TRUE, the package will have a platform specific extension (e.g. .zip for windows), and
will only be installable on the current platform, but no development environment is needed.

Usage

build(
pkg = ".",
path = NULL,
binary = FALSE,
vignettes = TRUE,
manual = FALSE,
args = NULL,
quiet = FALSE,
...

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

path Path in which to produce package. If NULL, defaults to the parent directory of
the package.

binary Produce a binary (--binary) or source (--no-manual --no-resave-data)
version of the package.

vignettes, manual
For source packages: if FALSE, don’t build PDF vignettes (--no-build-vignettes)
or manual (--no-manual).

args An optional character vector of additional command line arguments to be passed
to R CMD build if binary = FALSE, or R CMD install if binary = TRUE.

quiet if TRUE suppresses output from this function.
... Additional arguments passed to pkgbuild::build.

4 build

Details

Configuration:
DESCRIPTION entries:

• Config/build/clean-inst-doc can be set to FALSE to avoid cleaning up inst/doc when
building a source package. Set it to TRUE to force a cleanup. See the clean_doc argument.

• Config/build/copy-method can be used to avoid copying large directories in R CMD build.
It works by copying (or linking) the files of the package to a temporary directory, leaving
out the (possibly large) files that are not part of the package. Possible values:
– none: pkgbuild does not copy the package tree. This is the default.
– copy: the package files are copied to a temporary directory before R CMD build.
– link: the package files are symbolic linked to a temporary directory before R CMD build.

Windows does not have symbolic links, so on Windows this is equivalent to copy.
You can also use the pkg.build_copy_method option or the PKG_BUILD_COPY_METHOD en-
vironment variable to set the copy method. The option is consulted first, then the DESCRIPTION
entry, then the environment variable.

• Config/build/extra-sources can be used to define extra source files for pkgbuild to
decide whether a package DLL needs to be recompiled in needs_compile(). The syn-
tax is a comma separated list of file names, or globs. (See utils::glob2rx().) E.g.
src/rust/src/*.rs or configure*.

• Config/build/bootstrap can be set to TRUE to run Rscript bootstrap.R in the source
directory prior to running subsequent build steps.

Options:
• pkg.build_copy_method: use this option to avoid copying large directories when building

a package. See possible values above, at the Config/build/copy-method DESCRIPTION
entry.

• pkg.build_stop_for_warnings: if it is set to TRUE, then pkgbuild will stop for R CMD build
errors. It takes precedence over the PKG_BUILD_STOP_FOR_WARNINGS environment variable.

Environment variables:
• PKG_BUILD_COLOR_DIAGNOSTICS: set it to false to opt out of colored compiler diagnostics.

Set it to true to force colored compiler diagnostics.
• PKG_BUILD_COPY_METHOD: use this environment variable to avoid copying large directories

when building a package. See possible values above, at the Config/build/copy-method
DESCRIPTION entry.

will stop for R CMD build errors. The pkg.build_stop_for_warnings option takes prece-
dence over this environment variable.

Value

a string giving the location (including file name) of the built package

Note

The default manual = FALSE is not suitable for a CRAN submission, which may require manual =
TRUE. Even better, use submit_cran() or release().

build_manual 5

build_manual Create package pdf manual

Description

Create package pdf manual

Usage

build_manual(pkg = ".", path = NULL)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

path path in which to produce package manual. If NULL, defaults to the parent direc-
tory of the package.

See Also

Rd2pdf()

build_rmd Build a Rmarkdown files package

Description

build_rmd() is a wrapper around rmarkdown::render() that first installs a temporary copy of
the package, and then renders each .Rmd in a clean R session. build_readme() locates your
README.Rmd and builds it into a README.md

Usage

build_rmd(files, path = ".", output_options = list(), ..., quiet = TRUE)

build_readme(path = ".", quiet = TRUE, ...)

Arguments

files The Rmarkdown files to be rendered.
path path to the package to build the readme.
output_options List of output options that can override the options specified in metadata (e.g.

could be used to force self_contained or mathjax = "local"). Note that this
is only valid when the output format is read from metadata (i.e. not a custom
format object passed to output_format).

... additional arguments passed to rmarkdown::render()

quiet If TRUE, suppress output.

6 build_vignettes

build_site Execute pkgdown build_site in a package

Description

build_site() is a shortcut for pkgdown::build_site(), it generates the static HTML documen-
tation.

Usage

build_site(path = ".", quiet = TRUE, ...)

Arguments

path path to the package to build the static HTML.

quiet If TRUE, suppress output.

... additional arguments passed to pkgdown::build_site()

build_vignettes Build package vignettes.

Description

Builds package vignettes using the same algorithm that R CMD build does. This means including
non-Sweave vignettes, using makefiles (if present), and copying over extra files. The files are
copied in the ’doc’ directory and an vignette index is created in ’Meta/vignette.rds’, as they would
be in a built package. ’doc’ and ’Meta’ are added to .Rbuildignore, so will not be included in
the built package. These files can be checked into version control, so they can be viewed with
browseVignettes() and vignette() if the package has been loaded with load_all() without
needing to re-build them locally.

Usage

build_vignettes(
pkg = ".",
dependencies = "VignetteBuilder",
clean = TRUE,
upgrade = "never",
quiet = FALSE,
install = TRUE,
keep_md = TRUE

)

check 7

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

dependencies Which dependencies do you want to check? Can be a character vector (select-
ing from "Depends", "Imports", "LinkingTo", "Suggests", or "Enhances"), or a
logical vector.
TRUE is shorthand for "Depends", "Imports", "LinkingTo" and "Suggests". NA is
shorthand for "Depends", "Imports" and "LinkingTo" and is the default. FALSE
is shorthand for no dependencies (i.e. just check this package, not its dependen-
cies).
The value "soft" means the same as TRUE, "hard" means the same as NA.
You can also specify dependencies from one or more additional fields, common
ones include:

• Config/Needs/website - for dependencies used in building the pkgdown site.
• Config/Needs/coverage for dependencies used in calculating test coverage.

clean Remove all files generated by the build, even if there were copies there before.

upgrade Should package dependencies be upgraded? One of "default", "ask", "always",
or "never". "default" respects the value of the R_REMOTES_UPGRADE environment
variable if set, and falls back to "ask" if unset. "ask" prompts the user for which
out of date packages to upgrade. For non-interactive sessions "ask" is equivalent
to "always". TRUE and FALSE are also accepted and correspond to "always" and
"never" respectively.

quiet If TRUE, suppresses most output. Set to FALSE if you need to debug.

install If TRUE, install the package before building vignettes.

keep_md If TRUE, move md intermediates as well as rendered outputs. Most useful when
using the keep_md YAML option for Rmarkdown outputs. See https://bookdown.
org/yihui/rmarkdown/html-document.html#keeping-markdown.

See Also

clean_vignettes() to remove the pdfs in ‘doc’ created from vignettes

clean_vignettes() to remove build tex/pdf files.

check Build and check a package

Description

check() automatically builds and checks a source package, using all known best practices. check_built()
checks an already-built package.

Passing R CMD check is essential if you want to submit your package to CRAN: you must not have
any ERRORs or WARNINGs, and you want to ensure that there are as few NOTEs as possible. If

https://bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown
https://bookdown.org/yihui/rmarkdown/html-document.html#keeping-markdown

8 check

you are not submitting to CRAN, at least ensure that there are no ERRORs or WARNINGs: these
typically represent serious problems.

check() automatically builds a package before calling check_built(), as this is the recommended
way to check packages. Note that this process runs in an independent R session, so nothing in your
current workspace will affect the process. Under-the-hood, check() and check_built() rely on
pkgbuild::build() and rcmdcheck::rcmdcheck().

Usage

check(
pkg = ".",
document = NULL,
build_args = NULL,
...,
manual = FALSE,
cran = TRUE,
remote = FALSE,
incoming = remote,
force_suggests = FALSE,
run_dont_test = FALSE,
args = "--timings",
env_vars = c(NOT_CRAN = "true"),
quiet = FALSE,
check_dir = NULL,
cleanup = deprecated(),
vignettes = TRUE,
error_on = c("never", "error", "warning", "note")

)

check_built(
path = NULL,
cran = TRUE,
remote = FALSE,
incoming = remote,
force_suggests = FALSE,
run_dont_test = FALSE,
manual = FALSE,
args = "--timings",
env_vars = NULL,
check_dir = tempdir(),
quiet = FALSE,
error_on = c("never", "error", "warning", "note")

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

check 9

document By default (NULL) will document if your installed roxygen2 version matches the
version declared in the DESCRIPTION file. Use TRUE or FALSE to override the
default.

build_args Additional arguments passed to R CMD build

... Additional arguments passed on to pkgbuild::build().
manual If FALSE, don’t build and check manual (--no-manual).
cran if TRUE (the default), check using the same settings as CRAN uses. Because this

is a moving target and is not uniform across all of CRAN’s machine, this is on a
"best effort" basis. It is more complicated than simply setting --as-cran.

remote Sets _R_CHECK_CRAN_INCOMING_REMOTE_ env var. If TRUE, performs a number
of CRAN incoming checks that require remote access.

incoming Sets _R_CHECK_CRAN_INCOMING_ env var. If TRUE, performs a number of CRAN
incoming checks.

force_suggests Sets _R_CHECK_FORCE_SUGGESTS_. If FALSE (the default), check will proceed
even if all suggested packages aren’t found.

run_dont_test Sets --run-donttest so that examples surrounded in \donttest{} are also
run. When cran = TRUE, this only affects R 3.6 and earlier; in R 4.0, code in
\donttest{} is always run as part of CRAN submission.

args Character vector of arguments to pass to R CMD check. Pass each argument
as a single element of this character vector (do not use spaces to delimit ar-
guments like you would in the shell). For example, to skip running of exam-
ples and tests, use args = c("--no-examples", "--no-tests") and not args
= "--no-examples --no-tests". (Note that instead of the --output option
you should use the check_dir argument, because --output cannot deal with
spaces and other special characters on Windows.)

env_vars Environment variables set during R CMD check

quiet if TRUE suppresses output from this function.
check_dir Path to a directory where the check is performed. If this is not NULL, then the

a temporary directory is used, that is cleaned up when the returned object is
garbage collected.

cleanup [Deprecated] See check_dir for details.
vignettes If FALSE, do not build or check vignettes, equivalent to using args = '--ignore-vignettes'

and build_args = '--no-build-vignettes'.
error_on Whether to throw an error on R CMD check failures. Note that the check is

always completed (unless a timeout happens), and the error is only thrown after
completion.
error_on is passed through to rcmdcheck::rcmdcheck(), which is the defini-
tive source for what the different values mean. If not specified by the user, both
check() and check_built() default to error_on = "never" in interactive use
and "warning" in a non-interactive setting.

path Path to built package.

Value

An object containing errors, warnings, notes, and more.

10 check_mac_release

Environment variables

Devtools does its best to set up an environment that combines best practices with how check works
on CRAN. This includes:

• The standard environment variables set by devtools: r_env_vars(). Of particular note for
package tests is the NOT_CRAN env var, which lets you know that your tests are running some-
where other than CRAN, and hence can take a reasonable amount of time.

• Debugging flags for the compiler, set by compiler_flags(FALSE).

• If aspell is found, _R_CHECK_CRAN_INCOMING_USE_ASPELL_ is set to TRUE. If no spell checker
is installed, a warning is issued.

• Environment variables, controlled by arguments incoming, remote and force_suggests.

See Also

release() if you want to send the checked package to CRAN.

check_mac_release Check a package on macOS

Description

This function first bundles a source package, then uploads it to https://mac.r-project.org/
macbuilder/submit.html. This function returns a link to the page where the check results will
appear.

Usage

check_mac_release(
pkg = ".",
dep_pkgs = character(),
args = NULL,
manual = TRUE,
quiet = FALSE,
...

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

dep_pkgs Additional custom dependencies to install prior to checking the package.

args An optional character vector of additional command line arguments to be passed
to R CMD build if binary = FALSE, or R CMD install if binary = TRUE.

manual Should the manual be built?

quiet If TRUE, suppresses output.

... Additional arguments passed to pkgbuild::build().

https://mac.r-project.org/macbuilder/submit.html
https://mac.r-project.org/macbuilder/submit.html

check_man 11

Value

The url with the check results (invisibly)

See Also

Other build functions: check_rhub(), check_win()

check_man Check documentation, as R CMD check does.

Description

This function attempts to run the documentation related checks in the same way that R CMD check
does. Unfortunately it can’t run them all because some tests require the package to be loaded, and
the way they attempt to load the code conflicts with how devtools does it.

Usage

check_man(pkg = ".")

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

Value

Nothing. This function is called purely for it’s side effects: if no errors there will be no output.

Examples

Not run:
check_man("mypkg")

End(Not run)

12 check_rhub

check_rhub Run CRAN checks for package on R-hub

Description

It runs build() on the package, with the arguments specified in args, and then submits it to the
R-hub builder at https://builder.r-hub.io. The interactive option controls whether the
function waits for the check output. Regardless, after the check is complete, R-hub sends an email
with the results to the package maintainer.

Usage

check_rhub(
pkg = ".",
platforms = NULL,
email = NULL,
interactive = TRUE,
build_args = NULL,
...

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

platforms R-hub platforms to run the check on. If NULL uses default list of CRAN checkers
(one for each major platform, and one with extra checks if you have compiled
code). You can also specify your own, see rhub::platforms() for a complete
list.

email email address to notify, defaults to the maintainer address in the package.

interactive whether to show the status of the build interactively. R-hub will send an email
to the package maintainer’s email address, regardless of whether the check is
interactive or not.

build_args Arguments passed to R CMD build

... extra arguments, passed to rhub::check_for_cran().

Value

a rhub_check object.

About email validation on r-hub

To build and check R packages on R-hub, you need to validate your email address. This is because
R-hub sends out emails about build results. See more at rhub::validate_email().

https://builder.r-hub.io

check_win 13

See Also

Other build functions: check_mac_release(), check_win()

check_win Check a package on Windows

Description

This function first bundles a source package, then uploads it to https://win-builder.r-project.
org/. Once the service has built and checked the package, an email is sent to address of the main-
tainer listed in DESCRIPTION. This usually takes around 30 minutes. The email contains a link to a
directory with the package binary and check logs, which will be deleted after a couple of days.

Usage

check_win_devel(
pkg = ".",
args = NULL,
manual = TRUE,
email = NULL,
quiet = FALSE,
...

)

check_win_release(
pkg = ".",
args = NULL,
manual = TRUE,
email = NULL,
quiet = FALSE,
...

)

check_win_oldrelease(
pkg = ".",
args = NULL,
manual = TRUE,
email = NULL,
quiet = FALSE,
...

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

https://win-builder.r-project.org/
https://win-builder.r-project.org/

14 clean_vignettes

args An optional character vector of additional command line arguments to be passed
to R CMD build if binary = FALSE, or R CMD install if binary = TRUE.

manual Should the manual be built?

email An alternative email address to use. If NULL, the default is to use the package
maintainer’s email.

quiet If TRUE, suppresses output.

... Additional arguments passed to pkgbuild::build().

Functions

• check_win_devel(): Check package on the development version of R.

• check_win_release(): Check package on the released version of R.

• check_win_oldrelease(): Check package on the previous major release version of R.

See Also

Other build functions: check_mac_release(), check_rhub()

clean_vignettes Clean built vignettes.

Description

This uses a fairly rudimentary algorithm where any files in ‘doc’ with a name that exists in ‘vignettes’
are removed.

Usage

clean_vignettes(pkg = ".")

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

create 15

create Create a package

Description

Create a package

Usage

create(path, ..., open = FALSE)

Arguments

path A path. If it exists, it is used. If it does not exist, it is created, provided that the
parent path exists.

... Additional arguments passed to usethis::create_package()

open If TRUE, activates the new project:

• If using RStudio desktop, the package is opened in a new session.
• If on RStudio server, the current RStudio project is activated.
• Otherwise, the working directory and active project is changed.

Value

The path to the created package, invisibly.

dev_sitrep Report package development situation

Description

dev_sitrep() reports

• If R is up to date

• If RStudio is up to date

• If compiler build tools are installed and available for use

• If devtools and its dependencies are up to date

• If the package’s dependencies are up to date

Call this function if things seem weird and you’re not sure what’s wrong or how to fix it. If this
function returns no output everything should be ready for package development.

Usage

dev_sitrep(pkg = ".", debug = FALSE)

16 document

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

debug If TRUE, will print out extra information useful for debugging. If FALSE, it will
use result cached from a previous run.

Value

A named list, with S3 class dev_sitrep (for printing purposes).

Examples

Not run:
dev_sitrep()

End(Not run)

document Use roxygen to document a package.

Description

This function is a wrapper for the roxygen2::roxygenize() function from the roxygen2 package.
See the documentation and vignettes of that package to learn how to use roxygen.

Usage

document(pkg = ".", roclets = NULL, quiet = FALSE)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

roclets Character vector of roclet names to use with package. The default, NULL, uses
the roxygen roclets option, which defaults to c("collate", "namespace",
"rd").

quiet if TRUE suppresses output from this function.

See Also

roxygen2::roxygenize(), browseVignettes("roxygen2")

install 17

install Install a local development package.

Description

Uses R CMD INSTALL to install the package. Will also try to install dependencies of the package
from CRAN, if they’re not already installed.

Usage

install(
pkg = ".",
reload = TRUE,
quick = FALSE,
build = !quick,
args = getOption("devtools.install.args"),
quiet = FALSE,
dependencies = NA,
upgrade = "default",
build_vignettes = FALSE,
keep_source = getOption("keep.source.pkgs"),
force = FALSE,
...

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

reload if TRUE (the default), will automatically reload the package after installing.

quick if TRUE skips docs, multiple-architectures, demos, and vignettes, to make instal-
lation as fast as possible.

build if TRUE pkgbuild::build()s the package first: this ensures that the installa-
tion is completely clean, and prevents any binary artefacts (like ‘.o’, .so) from
appearing in your local package directory, but is considerably slower, because
every compile has to start from scratch.

args An optional character vector of additional command line arguments to be passed
to R CMD INSTALL. This defaults to the value of the option "devtools.install.args".

quiet If TRUE, suppress output.

dependencies Which dependencies do you want to check? Can be a character vector (select-
ing from "Depends", "Imports", "LinkingTo", "Suggests", or "Enhances"), or a
logical vector.
TRUE is shorthand for "Depends", "Imports", "LinkingTo" and "Suggests". NA is
shorthand for "Depends", "Imports" and "LinkingTo" and is the default. FALSE

18 install

is shorthand for no dependencies (i.e. just check this package, not its dependen-
cies).

The value "soft" means the same as TRUE, "hard" means the same as NA.

You can also specify dependencies from one or more additional fields, common
ones include:

• Config/Needs/website - for dependencies used in building the pkgdown site.

• Config/Needs/coverage for dependencies used in calculating test coverage.

upgrade Should package dependencies be upgraded? One of "default", "ask", "always",
or "never". "default" respects the value of the R_REMOTES_UPGRADE environment
variable if set, and falls back to "ask" if unset. "ask" prompts the user for which
out of date packages to upgrade. For non-interactive sessions "ask" is equivalent
to "always". TRUE and FALSE are also accepted and correspond to "always" and
"never" respectively.

build_vignettes

if TRUE, will build vignettes. Normally it is build that’s responsible for creating
vignettes; this argument makes sure vignettes are built even if a build never
happens (i.e. because build = FALSE).

keep_source If TRUE will keep the srcrefs from an installed package. This is useful for debug-
ging (especially inside of RStudio). It defaults to the option "keep.source.pkgs".

force Force installation, even if the remote state has not changed since the previous
install.

... additional arguments passed to remotes::install_deps() when installing de-
pendencies.

Details

If quick = TRUE, installation takes place using the current package directory. If you have compiled
code, this means that artefacts of compilation will be created in the src/ directory. If you want
to avoid this, you can use build = TRUE to first build a package bundle and then install it from a
temporary directory. This is slower, but keeps the source directory pristine.

If the package is loaded, it will be reloaded after installation. This is not always completely possible,
see reload() for caveats.

To install a package in a non-default library, use withr::with_libpaths().

See Also

update_packages() to update installed packages from the source location and with_debug() to
install packages with debugging flags set.

Other package installation: uninstall()

install_deps 19

install_deps Install package dependencies if needed.

Description

install_deps() will install the user dependencies needed to run the package, install_dev_deps()
will also install the development dependencies needed to test and build the package.

Usage

install_deps(
pkg = ".",
dependencies = NA,
repos = getOption("repos"),
type = getOption("pkgType"),
upgrade = c("default", "ask", "always", "never"),
quiet = FALSE,
build = TRUE,
build_opts = c("--no-resave-data", "--no-manual", " --no-build-vignettes"),
...

)

install_dev_deps(
pkg = ".",
dependencies = TRUE,
repos = getOption("repos"),
type = getOption("pkgType"),
upgrade = c("default", "ask", "always", "never"),
quiet = FALSE,
build = TRUE,
build_opts = c("--no-resave-data", "--no-manual", " --no-build-vignettes"),
...

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

dependencies Which dependencies do you want to check? Can be a character vector (select-
ing from "Depends", "Imports", "LinkingTo", "Suggests", or "Enhances"), or a
logical vector.
TRUE is shorthand for "Depends", "Imports", "LinkingTo" and "Suggests". NA is
shorthand for "Depends", "Imports" and "LinkingTo" and is the default. FALSE
is shorthand for no dependencies (i.e. just check this package, not its dependen-
cies).
The value "soft" means the same as TRUE, "hard" means the same as NA.

20 lint

You can also specify dependencies from one or more additional fields, common
ones include:

• Config/Needs/website - for dependencies used in building the pkgdown site.
• Config/Needs/coverage for dependencies used in calculating test coverage.

repos A character vector giving repositories to use.

type Type of package to update.

upgrade Should package dependencies be upgraded? One of "default", "ask", "always",
or "never". "default" respects the value of the R_REMOTES_UPGRADE environment
variable if set, and falls back to "ask" if unset. "ask" prompts the user for which
out of date packages to upgrade. For non-interactive sessions "ask" is equivalent
to "always". TRUE and FALSE are also accepted and correspond to "always" and
"never" respectively.

quiet If TRUE, suppress output.

build if TRUE pkgbuild::build()s the package first: this ensures that the installa-
tion is completely clean, and prevents any binary artefacts (like ‘.o’, .so) from
appearing in your local package directory, but is considerably slower, because
every compile has to start from scratch.

build_opts Options to pass to R CMD build, only used when build is TRUE.

... additional arguments passed to remotes::install_deps() when installing de-
pendencies.

Examples

Not run: install_deps(".")

lint Lint all source files in a package

Description

The default linters correspond to the style guide at https://style.tidyverse.org/, however it
is possible to override any or all of them using the linters parameter.

Usage

lint(pkg = ".", cache = TRUE, ...)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

cache Store the lint results so repeated lints of the same content use the previous re-
sults. Consult the lintr package to learn more about its caching behaviour.

... Additional arguments passed to lintr::lint_package().

https://style.tidyverse.org/

load_all 21

See Also

lintr::lint_package(), lintr::lint()

load_all Load complete package

Description

load_all() loads a package. It roughly simulates what happens when a package is installed and
loaded with library(), without having to first install the package. It:

• Loads all data files in data/. See load_data() for more details.

• Sources all R files in the R directory, storing results in environment that behaves like a regular
package namespace. See load_code() for more details.

• Adds a shim from system.file() to shim_system.file() in the imports environment of
the package. This ensures that system.file() works with both development and installed
packages despite their differing directory structures.

• Adds shims from help() and ? to shim_help() and shim_question() to make it easier to
preview development documentation.

• Compiles any C, C++, or Fortran code in the src/ directory and connects the generated DLL
into R. See pkgbuild::compile_dll() for more details.

• Loads any compiled translations in inst/po.

• Runs .onAttach(), .onLoad() and .onUnload() functions at the correct times.

• If you use testthat, will load all test helpers so you can access them interactively. devtools
sets the DEVTOOLS_LOAD environment variable to the package name to let you check whether
the helpers are run during package loading.

is_loading() returns TRUE when it is called while load_all() is running. This may be useful e.g.
in .onLoad hooks.

Usage

load_all(
path = ".",
reset = TRUE,
recompile = FALSE,
export_all = TRUE,
helpers = TRUE,
quiet = FALSE,
...

)

22 load_all

Arguments

path Path to a package, or within a package.

reset clear package environment and reset file cache before loading any pieces of
the package. This largely equivalent to running unload(), however the old
namespaces are not completely removed and no .onUnload() hooks are called.
Use reset = FALSE may be faster for large code bases, but is a significantly less
accurate approximation.

recompile DEPRECATED. force a recompile of DLL from source code, if present. This is
equivalent to running pkgbuild::clean_dll() before load_all()

export_all If TRUE (the default), export all objects. If FALSE, export only the objects that
are listed as exports in the NAMESPACE file.

helpers if TRUE loads testthat test helpers.

quiet if TRUE suppresses output from this function.

... Additional arguments passed to pkgload::load_all().

Differences to regular loading

load_all() tries its best to reproduce the behaviour of loadNamespace() and library(). How-
ever it deviates from normal package loading in several ways.

• load_all() doesn’t install the package to a library, so system.file() doesn’t work. pk-
gload fixes this for the package itself installing a shim, shim_system.file(). However,
this shim is not visible to third party packages, so they will fail if they attempt to find files
within your package. One potential workaround is to use fs::path_package() instead of
system.file(), since that understands the mechanisms that devtools uses to load packages.

• load_all() loads all packages referenced in Imports at load time, but loadNamespace()
and library() only load package dependencies as they are needed.

• load_all() copies all objects (not just the ones listed as exports) into the package environ-
ment. This is useful during development because it makes internal objects easy to access. To
export only the objects listed as exports, use export_all = FALSE. This more closely sim-
ulates behavior when loading an installed package with library(), and can be useful for
checking for missing exports.

Examples

Not run:
Load the package in the current directory
load_all("./")

Running again loads changed files
load_all("./")

With reset=TRUE, unload and reload the package for a clean start
load_all("./", TRUE)

With export_all=FALSE, only objects listed as exports in NAMESPACE
are exported

missing_s3 23

load_all("./", export_all = FALSE)

End(Not run)

missing_s3 Find missing s3 exports.

Description

The method is heuristic - looking for objs with a period in their name.

Usage

missing_s3(pkg = ".")

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

release Release package to CRAN.

Description

Run automated and manual tests, then post package to CRAN.

Usage

release(pkg = ".", check = FALSE, args = NULL)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

check if TRUE, run checking, otherwise omit it. This is useful if you’ve just checked
your package and you’re ready to release it.

args An optional character vector of additional command line arguments to be passed
to R CMD build.

24 reload

Details

The package release process will:

• Confirm that the package passes R CMD check on relevant platforms

• Confirm that important files are up-to-date

• Build the package

• Submit the package to CRAN, using comments in "cran-comments.md"

You can add arbitrary extra questions by defining an (un-exported) function called release_questions()
that returns a character vector of additional questions to ask.

You also need to read the CRAN repository policy at ’https://cran.r-project.org/web/packages/policies.html’
and make sure you’re in line with the policies. release tries to automate as many of polices as pos-
sible, but it’s impossible to be completely comprehensive, and they do change in between releases
of devtools.

See Also

usethis::use_release_issue() to create a checklist of release tasks that you can use in addition
to or in place of release.

reload Unload and reload package.

Description

This attempts to unload and reload an installed package. If the package is not loaded already, it
does nothing. It’s not always possible to cleanly unload a package: see the caveats in unload() for
some of the potential failure points. If in doubt, restart R and reload the package with library().

Usage

reload(pkg = ".", quiet = FALSE)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

quiet if TRUE suppresses output from this function.

See Also

load_all() to load a package for interactive development.

run_examples 25

Examples

Not run:
Reload package that is in current directory
reload(".")

Reload package that is in ./ggplot2/
reload("ggplot2/")

Can use inst() to find the package path
This will reload the installed ggplot2 package
reload(pkgload::inst("ggplot2"))

End(Not run)

run_examples Run all examples in a package.

Description

One of the most frustrating parts of R CMD check is getting all of your examples to pass - whenever
one fails you need to fix the problem and then restart the whole process. This function makes it a
little easier by making it possible to run all examples from an R function.

Usage

run_examples(
pkg = ".",
start = NULL,
show = deprecated(),
run_donttest = FALSE,
run_dontrun = FALSE,
fresh = FALSE,
document = TRUE,
run = deprecated(),
test = deprecated()

)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

start Where to start running the examples: this can either be the name of Rd file to
start with (with or without extensions), or a topic name. If omitted, will start
with the (lexicographically) first file. This is useful if you have a lot of examples
and don’t want to rerun them every time you fix a problem.

show DEPRECATED.

run_donttest if TRUE, do run \donttest sections in the Rd files.

26 show_news

run_dontrun if TRUE, do run \dontrun sections in the Rd files.

fresh if TRUE, will be run in a fresh R session. This has the advantage that there’s no
way the examples can depend on anything in the current session, but interactive
code (like browser()) won’t work.

document if TRUE, document() will be run to ensure examples are updated before running
them.

run, test Deprecated, see run_dontrun and run_donttest above.

save_all Save all documents in an active IDE session.

Description

Helper function wrapping IDE-specific calls to save all documents in the active session. In this form,
callers of save_all() don’t need to execute any IDE-specific code. This function can be extended
to include other IDE implementations of their equivalent rstudioapi::documentSaveAll() meth-
ods.

Usage

save_all()

show_news Show package news

Description

Show package news

Usage

show_news(pkg = ".", latest = TRUE, ...)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

latest if TRUE, only show the news for the most recent version.

... other arguments passed on to news

source_gist 27

source_gist Run a script on gist

Description

“Gist is a simple way to share snippets and pastes with others. All gists are git repositories, so they
are automatically versioned, forkable and usable as a git repository.” https://gist.github.com/

Usage

source_gist(id, ..., filename = NULL, sha1 = NULL, quiet = FALSE)

Arguments

id either full url (character), gist ID (numeric or character of numeric).

... other options passed to source()

filename if there is more than one R file in the gist, which one to source (filename ending
in ’.R’)? Default NULL will source the first file.

sha1 The SHA-1 hash of the file at the remote URL. This is highly recommend as
it prevents you from accidentally running code that’s not what you expect. See
source_url() for more information on using a SHA-1 hash.

quiet if FALSE, the default, prints informative messages.

See Also

source_url()

Examples

Not run:
You can run gists given their id
source_gist(6872663)
source_gist("6872663")

Or their html url
source_gist("https://gist.github.com/hadley/6872663")
source_gist("gist.github.com/hadley/6872663")

It's highly recommend that you run source_gist with the optional
sha1 argument - this will throw an error if the file has changed since
you first ran it
source_gist(6872663, sha1 = "54f1db27e60")
Wrong hash will result in error
source_gist(6872663, sha1 = "54f1db27e61")

#' # You can speficy a particular R file in the gist
source_gist(6872663, filename = "hi.r")
source_gist(6872663, filename = "hi.r", sha1 = "54f1db27e60")

https://gist.github.com/

28 source_url

End(Not run)

source_url Run a script through some protocols such as http, https, ftp, etc.

Description

If a SHA-1 hash is specified with the sha1 argument, then this function will check the SHA-1 hash
of the downloaded file to make sure it matches the expected value, and throw an error if it does
not match. If the SHA-1 hash is not specified, it will print a message displaying the hash of the
downloaded file. The purpose of this is to improve security when running remotely-hosted code; if
you have a hash of the file, you can be sure that it has not changed. For convenience, it is possible
to use a truncated SHA1 hash, down to 6 characters, but keep in mind that a truncated hash won’t
be as secure as the full hash.

Usage

source_url(url, ..., sha1 = NULL)

Arguments

url url

... other options passed to source()

sha1 The (prefix of the) SHA-1 hash of the file at the remote URL.

See Also

source_gist()

Examples

Not run:

source_url("https://gist.github.com/hadley/6872663/raw/hi.r")

With a hash, to make sure the remote file hasn't changed
source_url("https://gist.github.com/hadley/6872663/raw/hi.r",

sha1 = "54f1db27e60bb7e0486d785604909b49e8fef9f9")

With a truncated hash
source_url("https://gist.github.com/hadley/6872663/raw/hi.r",

sha1 = "54f1db27e60")

End(Not run)

spell_check 29

spell_check Spell checking

Description

Runs a spell check on text fields in the package description file, manual pages, and optionally
vignettes. Wraps the spelling package.

Usage

spell_check(pkg = ".", vignettes = TRUE, use_wordlist = TRUE)

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

vignettes also check all rmd and rnw files in the pkg vignettes folder
use_wordlist ignore words in the package WORDLIST file

test Execute testthat tests in a package

Description

• test() runs all tests in a package. It’s a shortcut for testthat::test_dir()
• test_active_file() runs test() on the active file.
• test_coverage() computes test coverage for your package. It’s a shortcut for covr::package_coverage()

plus covr::report().
• test_coverage_active_file() computes test coverage for the active file. It’s a shortcut for
covr::file_coverage() plus covr::report().

Usage

test(pkg = ".", filter = NULL, stop_on_failure = FALSE, export_all = TRUE, ...)

test_active_file(file = find_active_file(), ...)

test_coverage(pkg = ".", show_report = interactive(), ...)

test_coverage_active_file(
file = find_active_file(),
filter = TRUE,
show_report = interactive(),
export_all = TRUE,
...

)

30 uninstall

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

filter If not NULL, only tests with file names matching this regular expression will be
executed. Matching is performed on the file name after it’s stripped of "test-"
and ".R".

stop_on_failure

If TRUE, throw an error if any tests fail.

export_all If TRUE (the default), export all objects. If FALSE, export only the objects that
are listed as exports in the NAMESPACE file.

... additional arguments passed to wrapped functions.

file One or more source or test files. If a source file the corresponding test file will
be run. The default is to use the active file in RStudio (if available).

show_report Show the test coverage report.

uninstall Uninstall a local development package

Description

Uses remove.packages() to uninstall the package. To uninstall a package from a non-default
library, use in combination with withr::with_libpaths().

Usage

uninstall(pkg = ".", unload = TRUE, quiet = FALSE, lib = .libPaths()[[1]])

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

unload if TRUE (the default), ensures the package is unloaded, prior to uninstalling.

quiet If TRUE, suppress output.

lib a character vector giving the library directories to remove the packages from. If
missing, defaults to the first element in .libPaths().

See Also

with_debug() to install packages with debugging flags set.

Other package installation: install()

wd 31

wd Set working directory.

Description

Set working directory.

Usage

wd(pkg = ".", path = "")

Arguments

pkg The package to use, can be a file path to the package or a package object. See
as.package() for more information.

path path within package. Leave empty to change working directory to package di-
rectory.

Index

∗ build functions
check_mac_release, 10
check_rhub, 12
check_win, 13

∗ example functions
run_examples, 25

∗ package installation
install, 17
uninstall, 30

∗ programming
build_vignettes, 6
run_examples, 25

.libPaths, 30

activates, 15
as.package(), 3, 5, 7, 8, 10–14, 16, 17, 19,

20, 23–26, 29–31

bash, 2
browser(), 26
build, 3
build(), 12
build_manual, 5
build_readme (build_rmd), 5
build_rmd, 5
build_site, 6
build_vignettes, 6

check, 7
check_built (check), 7
check_mac_release, 10, 13, 14
check_man, 11
check_rhub, 11, 12, 14
check_win, 11, 13, 13
check_win_devel (check_win), 13
check_win_oldrelease (check_win), 13
check_win_release (check_win), 13
clean_vignettes, 14
clean_vignettes(), 7
compiler_flags(FALSE), 10

covr::file_coverage(), 29
covr::package_coverage(), 29
covr::report(), 29
create, 15

dev_sitrep, 15
document, 16
document(), 26

fs::path_package(), 22

install, 17, 30
install_deps, 19
install_dev_deps (install_deps), 19

library(), 21, 22, 24
lint, 20
lintr::lint(), 21
lintr::lint_package(), 20, 21
load_all, 21
load_all(), 24
load_code(), 21
load_data(), 21
loadNamespace(), 22

missing_s3, 23

pkgbuild::build, 3
pkgbuild::build(), 8–10, 14, 17, 20
pkgbuild::clean_dll(), 22
pkgbuild::compile_dll(), 21
pkgdown::build_site(), 6
pkgload::load_all(), 22

r_env_vars(), 10
rcmdcheck::rcmdcheck(), 8, 9
Rd2pdf(), 5
release, 23
release(), 4, 10
reload, 24
reload(), 18

32

INDEX 33

remotes::install_deps(), 18, 20
rhub::check_for_cran(), 12
rhub::platforms(), 12
rhub::validate_email(), 12
rmarkdown::render(), 5
roxygen2::roxygenize(), 16
run_examples, 25

save_all, 26
shim_help(), 21
shim_question(), 21
shim_system.file(), 21, 22
show_news, 26
source(), 27, 28
source_gist, 27
source_gist(), 28
source_url, 28
source_url(), 27
spell_check, 29
spelling, 29
submit_cran(), 4
system.file(), 21, 22

test, 29
test_active_file (test), 29
test_coverage (test), 29
test_coverage_active_file (test), 29
testthat::test_dir(), 29

uninstall, 18, 30
unload(), 22, 24
update_packages(), 18
usethis::create_package(), 15
usethis::use_release_issue(), 24
utils::glob2rx(), 4

wd, 31
with_debug(), 18, 30
withr::with_libpaths(), 18, 30
WORDLIST, 29

	bash
	build
	build_manual
	build_rmd
	build_site
	build_vignettes
	check
	check_mac_release
	check_man
	check_rhub
	check_win
	clean_vignettes
	create
	dev_sitrep
	document
	install
	install_deps
	lint
	load_all
	missing_s3
	release
	reload
	run_examples
	save_all
	show_news
	source_gist
	source_url
	spell_check
	test
	uninstall
	wd
	Index

